

Network Engineering Industry in World Economy

By: BVR Mohan Reddy Chairman and Managing Director Infotech Enterprises Limited

April 22, 2012

We deliver Global Engineering Solutions. Efficiently.

About Network Engineering Industry

- Network centric Industries: Assets / Inventory spread across a wide geography as a complex network
- **Prime Examples:** Fixed line & wireless telecom operators, gas & electric utilities, street networks.
- Key Technical / Operational Challenges: Aging infrastructure, Severe weather conditions, Managing massive amounts of data, Lack of standardization and interoperability.
- Regulatory Challenges: Legal, Environmental, Commercial
- Commercial Challenges: Efficient Resource Planning in a spatially distributed environment, Customer experience & retention, Geographical penetration, Average Revenue per Unit, Profitability under cost pressures and regulated environment.
- Solution: Efficient planning, design, operations, management and maintenance of networks – Geospatial Technologies play a crucial role here

Industry Perspective - Electric Utility Industry

Key Trends

- Smart Grid Initiatives Smart Meters, Green Initiatives, Efficiency, Rechargeable grid, Variable tariffs. Billions of \$ to being invested
- **Smart Metering** About 60mn units installed so far in Europe. About 100 million additional meters planned to be installed by 2016
- Energy Efficiency 8% progress between 1997 2007. Target to reduce consumption by 20% by 2020
- Green Energy EU Has 20/20/20 Green Vision for delivering clean, efficient, competitive and sustainable energy by 2020
 - Renewable Energy Goal is to reach 20% from the current 10% level
 - Greenhouse gas emissions Target towards cutting it down by 20%

Challenges:

- Ageing Infrastructure Leading to supply reliability issues
- Severe weather conditions Triggering outages
- Smart Grid Implementations Generating Tsunami of data which needs proper management
- Lack of Standardization Interoperability challenges among Utility systems
- Regulatory Pressures Dent on profitability

Installed base of electricity smart meters (EU23+2 2010-2016)

Source: Black & Veatch

Role of Geospatial Technologies - Utilities

Spatial visualization of Network Assets / Inventory

• The complete network is visualized as in real world. Critical for planning, design, operations and maintenance

Geospatial information is foundational for realizing Smart Grid

 Need spatially enabled data that is up-to-date, positionally accurate, complete, connected & consistent

Potential to unify Utility systems in handling the massive amounts of data generated

- Meter information alone is going to multiply about 3000 times
- Traditional means of viewing information will not suffice

Supports Outage Management as situational awareness offers inclusiveness of data

 Weather and other issues may cause disruptions. Helps in restoration efforts, handling emergency response and crew deployment/ management

Operational Optimization under regulatory pressures

Improving duration & frequency of interruptions by optimally maintaining assets

Geospatial dashboards – data analytics and BI

 Technical and commercial loss detection, varying tariff to optimally manage demand & supply, market and consumer information

Industry Perspective - Telecoms

Infotech Creating Business Impact

Key Trends

- Key contributor in Digital economy Impact on GDP and Economy.
 Tele-density is an important economic indicator
- High speed Broadband A recent study quantifies the isolated impact of broadband speed, showing that doubling the broadband speed for an economy in the OECD region increases GDP by 0.3%
- **Disruptive technologies** Are bringing in huge convergence in the areas of voice, data, and devices. An FTTH connection can deliver all
- **New Consumer demands** Productivity improvement, Social media, Entertainment, Gaming. Over 30% of the global population is now connected to Internet. Over 6 Billion mobile subscribers

Challenges

- Massive Investments needed Trillions needed for new roll outs like LTE / 4G to meet ever growing customer aspirations/ demands.
- Creation of new networks Need to create the network where demand and cash exist. Both are dynamic in nature.
- Profitable growth New networks may not necessarily translated in healthy growth. Value Added Services the key to profitable growth
- **Customer acquisition retention** Highly competitive, interoperable, customer experience is the key
- High operational efficiency A four dimensional problem Location of Users, 24X7, Capacity required, Quality of Service and experience

Role of Geospatial Technologies - Telecoms

Spatial dimension enhances the Network Planning process

 The complete network is visualized as in real world. Critical for planning, design, creating new networks, and upgrading existing infrastructure

Facilitates efficient Network Management

 Helps managing the network and understanding the capacity requirements against the network demands. Supports capacity augmentation process

Multi – dimensional visualization of the network

 Geospatial data is now multi-dimensional with sophisticated imagery and 3D Maps. Both OSP and ISP data can be viewed along with the connectivity details and tracing facilities

Supports service provisioning, assurance and maintenance

 Supports Field Force Management, restoration of services caused by disruptions, emergency response and crew deployment.

Operational efficiency through improved Asset Management

• GIS is the only tool that enables Operators the ability to View, Plan and Manage the ever expanding networks and its assets.

Business Planning, data analytics and BI

 Offers Business Intelligence and market information in geographical context which is useful considering the wide coverage of the networks

Industry Perspective - Street Networks

Key Trends

- Advent of Intelligent Vehicles Unmanned vehicles
 - Fuel Efficiency (ADAS) Advanced Driver Assistance Systems
 - Road Safety (Improved Driver Decision Making)
- Flying Cars / Roadable aircraft
- Green Vehicles That are energy efficient or use non conventional environment friendly non fossil fuel
- Next generation vehicles will need matching streets
 - Smart streets supporting navigation and energy optimization
 - Overlay information of Traffic, Weather, POI etc.
- 3 D Visualization, models, design and Intelligent RIS
- Crowdsourcing

Challenges:

- High cost of data creation, maintenance Street data is created at a high cost using surface, aerial, satellite sensors
- Need highly accurate data for precision in navigation
- Continuous updates to keep the data navigable Street information is continuously changing
- **Integration:** With systems / data like Traffic, Weather, Emergency Response etc.

Role of Geospatial Technologies – Street Networks

3D Design, modeling, visualization

 The complete network is visualized as in real world. Supports planning, design, operations, maintenance and locational intelligence

Route / ROW information – Planning & Operations

 Supports routing and provides ROW information – essential for planning and construction of new road networks

Maintenance of Streets and Asset

 Visual and attribute information facilitates easy maintenance of the network as well as the Assets alongside

Efficient trip Planning

 Traffic / Weather information, shortest route, fastest route, points of interest, e-commerce

Turn by Turn Navigation

 Turn by turn navigation for vehicles, manned or unmanned. Complete route assistance with time and distance information to destination

Driving / Traffic assistance, Safety

 Supports safety solutions like anti-collision, speed / curvature / slope / other hazzard information and warning, traffic density information, emergency response

Conclusion

GIS as Foundation for Future Systems:

- Unifier of systems in a Smart Grid
- Effective tool in handling big data
- 3D visualization and virtualization
- Enabler for roll out of NGN
- Advanced navigational experience and locational intelligence

This picture needs to be redesigned

www.infotech-enterprises.com

We deliver Global Engineering Solutions. Efficiently.